Selective catalytic reduction of N₂O with methane in the presence of excess oxygen over Fe-BEA zeolite

S. Kameoka,*a T. Suzuki,a K. Yuzaki,a T. Takeda,a S. Tanaka,a S. Ito,a T. Miyaderab and K. Kunimori*a

^a Institute of Materials Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan. E-mail: kameoka@ims.tsukuba.ac.jp, kunimori@ims.tsukuba.ac.jp

^b National Institute for Resources and Environment, 16-3 Onogawa, Tsukuba, Ibaraki 305-8569, Japan

Received (in Cambridge, UK) 17th February 2000, Accepted 21st March 2000

An Fe ion-exchanged BEA zeolite (Fe-BEA), which effectively performs selective catalytic reduction of N₂O with methane in the presence of excess oxygen, is much more active than Fe-MFI zeolite reported in the literature.

Nitrous oxide (N2O) and methane (CH4) are strong greenhouseeffect gases with a global warming potential (GWP) per molecule of ca. 300 and 30 times that of carbon dioxide (CO₂), respectively.1 N₂O is also identified as a contributor to the destruction of ozone in the stratosphere.² From the point of view of the environment, therefore, it is of interest to study selective catalytic reduction (SCR) of N₂O by CH₄ which can lead to simultaneous abatement of N2O and CH4 in emission gases. Recently, the groups of Segawa^{3,4} and Turek^{5,6} reported that the SCR of N₂O by hydrocarbons such as C_3H_6 and C_3H_8 took place effectively over Fe-MFI catalysts even in the presence of coexistent gases such as excess O2 and H2O. However, little detailed work with respect to other catalysts and/or reductants in the SCR of N₂O has been performed. We have been studying the SCR of N₂O with hydrocarbons over different Fe ionexchanged zeolite catalysts (e.g. Fe-MFI, Fe-MOR, Fe-NaY, etc.).7 During the course of this study, an Fe ion-exchanged BEA (Fe-BEA) catalyst was found to be much more active for the SCR of N₂O than Fe-MFI zeolite reported in the literature. We report here that the Fe-BEA catalyst performs effectively for the SCR of N₂O with CH₄ even in the presence of an excess of oxygen.

Fe-BEA (SiO₂/Al₂O₃ = 27.3) catalyst was prepared by ionexchange with a dilute solution of Fe(SO₄) at 50 °C for 20 h under a nitrogen atmosphere, and calcined in air for 12 h at 500 $^{\circ}$ C.^{3,4} For comparison, Fe-MFI (SiO₂/Al₂O₃ = 23.8) was also prepared by the same procedures as Fe-BEA. The zeolite supports (H-BEA, Na-MFI) were supplied by TOSOH Co. The loading weight of Fe on BEA and MFI supports was 0.77 wt% (25 % exchanged with Fe²⁺) and 2.90 wt% (80% exchanged with Fe²⁺), respectively. The reaction was carried out in a standard fixed-bed flow reactor by passing a gaseous mixture of N₂O (950 ppm), CH₄ (500 or 3000 ppm) and O₂ (10%) in an He flow at a total flow rate of 50 cm³ min⁻¹ over 50 mg of catalyst [total pressure: 1 atm; space velocity (SV): $60\,000$ h⁻¹]. The samples were pretreated at 500 °C with O₂ for 1 h in a flow reactor, followed by a He purge at the initial reaction temperature. Catalytic experiments on various reaction systems were performed as detailed in Table 1. The products were monitored by an on-line gas chromatograph (Shimadzu GC-8A) equipped with Molecular Sieve 5A (N₂, CH₄, CO) and Porapak Q (N₂O, CO₂, H₂O) columns. The catalytic activity for the reduction of N₂O with CH₄ was evaluated by the percentage conversion of N₂O and CH₄ to N₂ and CO_x (CO₂ and/or CO), respectively.

Figs. 1 and 2 show N₂O and CH₄ conversions in the different reaction systems (over Fe-BEA and Fe-MFI catalysts), respectively. As shown in Fig. 1, the catalytic activities of N₂O decomposition on both Fe-BEA and Fe-MFI catalysts were significantly promoted by adding CH₄, while N₂O decomposition was inhibited in the presence of O_2 . Compared with the

Table 1 List of the reaction systems on the catalytic experiments

		Feed composition in mixture gases		
Reaction No.	Catalyst	N ₂ O (ppm)	O ₂ (%)	CH ₄ (ppm)
1	Fe-BEA	950	0	0
2	Fe-BEA	950	10	0
3	Fe-BEA	950	0	500
4	Fe-BEA	950	10	500
5	Fe-BEA	950	10	3000
6	Fe-BEA	0	10	500
7	Fe-MFI	950	0	0
8	Fe-MFI	950	10	0
9	Fe-MFI	950	10	500

 N_2O (950 ppm)/ O_2 (10 %)/CH₄ (500 ppm) system, the N_2O conversion curve shifted to lower temperature in the absence of O_2 (O_2 : 10 \rightarrow 0%: No. 3 and 4 in Fig. 1), while the N₂O conversion was scarcely affected by the composition of CH₄ in this range (CH₄: 500 \rightarrow 3000 ppm: No. 4 and 5 in Fig. 1). For both Fe-BEA and Fe-MFI, increases of CH₄ conversions correlated well with that of N2O conversions. N2, H2O and CO2 were observed as the main products in the $N_2O/CH_4/O_2$ system for both catalysts. Moreover, it was found that there was a plateau in CH₄ conversion after N₂O conversion reached 100% (ca. 350–450 °C, Fig. 2). This is due to the fact that N_2O in the mixture gas was completely consumed by reaction with CH4 at such temperatures. It should be noted that oxidation of CH₄ by O₂ over the Fe-BEA catalyst began above 450 °C (No. 6 in Fig. 2). These results indicate that the reduction of N_2O and the oxidation of CH_4 in this reaction system (N₂O/ CH_4 /O₂) concomitantly take place at much lower temperature than each of original reaction temperatures in the N₂O decomposition (N₂O alone: No. 1 in Fig. 1) and the CH₄ oxidation (CH_4/O_2)

Fig. 1 N₂O conversion to N₂ over Fe-BEA and Fe-MFI. Reaction conditions (No.) are described in Table 1.

Fig. 2 CH_4 conversion to CO_2 over Fe-BEA and Fe-MFI. Reaction conditions (No.) are described in Table 1.

mixture: No. 6 in Fig. 2). Therefore, O atoms from N₂O molecules are much more efficient in activating CH₄ than O atoms from O₂ molecules at low temperature (<400 °C).

As also shown in Fig. 1, catalytic activities (per g cat) for the decomposition of N_2O and the selective catalytic reduction (SCR) of N_2O by CH₄ over the Fe-BEA catalyst are much higher than those over the Fe-MFI catalyst. Table 2 shows TOF

Table 2 Comparison of TOF values for N_2O decomposition and SCR of N_2O

	$10^{-4} \text{ TOF}^{a/s^{-1}}$				
	Decementation of N Ob	SCR of N ₂ O by CH ₄ ^c			
Catalyst	N ₂ formation	N ₂ formation	CO ₂ formation		
Fe-BEA	16.8	21.8	4.35		
Fe-MFI	1.19	1.73	0.07		
- TT	(TOE 1)	C 1 /	1 1 1		

^{*a*} Turnover frequency (TOF: s^{-1}): number of product molecules per number of Fe ions s^{-1} . ^{*b*} At 430 °C (reaction **No. 1** and **7**). ^{*c*} At 300 °C (reaction **No. 4** and **9**).

values based on the catalytic activities in N₂O (No. 1 and 7) and $N_2O/O_2/CH_4$ (No. 4 and 9) systems over Fe-BEA and Fe-MFI. The TOF values were estimated by assuming that all of loaded Fe (exchanged with Fe²⁺) act as active sites. These TOF values, of both the decomposition of N₂O and the SCR of N₂O by CH₄ over Fe-BEA are more than one order of magnitude higher than those over Fe-MFI. From the above results, it is strongly suggested that Fe-BEA zeolite is much more active than Fe-MFI zeolite. The difference in the catalytic activities between Fe-BEA and Fe-MFI suggests that the decomposition of N₂O and the SCR of N₂O by CH₄ may be influenced by the structure of zeolite and/or states of the Fe ions.7 On the other hand, the TOF values of N₂ formation on the SCR of N₂O by CH₄ were significantly higher than those for the decomposition of N₂O over both zeolites. This result indicates that the reaction mechanism for the SCR of N_2O by CH_4 is substantially different from that for the decomposition of N₂O.

The present results have demonstrated that the SCR of N₂O by CH₄ in the presence of an excess of O₂ occurs effectively over the Fe-BEA catalyst. Interestingly, the reaction temperatures for the SCR of N₂O by CH₄ and the selective oxidation of CH₄ by N₂O over Fe-BEA are much lower than those for N₂O decomposition $(2N_2O \rightarrow 2N_2 + O_2)$ or CH₄ combustion $(CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O)$ even in the presence of excess O₂. We are currently undertaking further investigations in our laboratory with respect to the detailed mechanism, the effect of coexistent gases (SO₂, NO, H₂O, *etc.*) and the characterization of active sites (Fe ion states *etc.*).

Notes and references

- 1 H. Rodhe, Science, 1990, 248, 1217.
- 2 F. Kapteijn, J. Rodriguez-Mirasol and J. A. Moulijn, Appl. Catal. B, 1996, 9, 25.
- 3 C. Pophal, T. Yogo, K. Yamada and K. Segawa, *Appl. Catal. B*, 1998, 16, 177.
- 4 K. Yamada, C. Pophal and K. Segawa, *Microporous Mesoporous Mater.*, 1998, 21, 549.
- 5 M. Kögel, V. H. Sandoval, W. Schwieger, A. Tissler and T. Turek, *Catal. Lett.*, 1998, **51**, 23.
- 6 M. Kögel, R. Mönnig, W. Schwieger, A. Tissler and T. Turek, J. Catal., 1999, 182, 470.
- 7 T. Takeda, K. Yuzaki, S. Ito, S.Kameoka, T. Miyadera and K. Kunimori, *The 84th Annual Meeting Catal. Soc. Jpn.*, 1999, 4G07.