Selective catalytic reduction of N_2O with methane in the presence of excess **oxygen over Fe-BEA zeolite**

S. Kameoka,**a* **T. Suzuki,***a* **K. Yuzaki,***a* **T. Takeda,***a* **S. Tanaka,***a* **S. Ito,***a* **T. Miyadera***b* **and K. Kunimori****a*

a Institute of Materials Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan. E-mail: kameoka@ims.tsukuba.ac.jp, kunimori@ims.tsukuba.ac.jp

b National Institute for Resources and Environment, 16-3 Onogawa, Tsukuba, Ibaraki 305-8569, Japan

Received (in Cambridge, UK) 17th February 2000, Accepted 21st March 2000

An Fe ion-exchanged BEA zeolite (Fe-BEA), which effectively performs selective catalytic reduction of N2O with methane in the presence of excess oxygen, is much more active than Fe-MFI zeolite reported in the literature.

Nitrous oxide (N_2O) and methane (CH_4) are strong greenhouseeffect gases with a global warming potential (GWP) per molecule of *ca*. 300 and 30 times that of carbon dioxide $(CO₂)$, respectively.¹ N₂O is also identified as a contributor to the destruction of ozone in the stratosphere.2 From the point of view of the environment, therefore, it is of interest to study selective catalytic reduction (SCR) of N_2O by CH₄ which can lead to simultaneous abatement of N_2O and CH_4 in emission gases. Recently, the groups of Segawa3,4 and Turek5,6 reported that the SCR of N₂O by hydrocarbons such as C_3H_6 and C_3H_8 took place effectively over Fe-MFI catalysts even in the presence of coexistent gases such as excess O_2 and H_2O . However, little detailed work with respect to other catalysts and/or reductants in the SCR of N_2O has been performed. We have been studying the SCR of N_2O with hydrocarbons over different Fe ionexchanged zeolite catalysts (*e.g.* Fe-MFI, Fe-MOR, Fe-NaY, *etc.*).7 During the course of this study, an Fe ion-exchanged BEA (Fe-BEA) catalyst was found to be much more active for the SCR of N_2O than Fe-MFI zeolite reported in the literature. We report here that the Fe-BEA catalyst performs effectively for the SCR of N_2O with CH₄ even in the presence of an excess of oxygen.

Fe-BEA ($SiO_2/Al_2O_3 = 27.3$) catalyst was prepared by ionexchange with a dilute solution of Fe(SO₄) at 50 °C for 20 h under a nitrogen atmosphere, and calcined in air for 12 h at 500 °C.^{3,4} For comparison, Fe-MFI (SiO₂/Al₂O₃ = 23.8) was also prepared by the same procedures as Fe-BEA. The zeolite supports (H-BEA, Na-MFI) were supplied by TOSOH Co. The loading weight of Fe on BEA and MFI supports was 0.77 wt% (25 % exchanged with Fe²⁺) and 2.90 \dot{wt} % (80% exchanged with Fe²⁺), respectively. The reaction was carried out in a standard fixed-bed flow reactor by passing a gaseous mixture of N_2O (950 ppm), CH₄ (500 or 3000 ppm) and O_2 (10%) in an He flow at a total flow rate of 50 cm³ min⁻¹ over 50 mg of catalyst [total pressure: 1 atm; space velocity (SV): $60\,000$ h⁻¹]. The samples were pretreated at 500 °C with O_2 for 1 h in a flow reactor, followed by a He purge at the initial reaction temperature. Catalytic experiments on various reaction systems were performed as detailed in Table 1. The products were monitored by an on-line gas chromatograph (Shimadzu GC-8A) equipped with Molecular Sieve 5A (N_2, CH_4, CO) and Porapak $Q(N_2O, CO_2, H_2O)$ columns. The catalytic activity for the reduction of N_2O with CH_4 was evaluated by the percentage conversion of N_2O and CH_4 to N_2 and CO_x (CO₂ and/or CO), respectively.

Figs. 1 and 2 show N_2O and CH₄ conversions in the different reaction systems (over Fe-BEA and Fe-MFI catalysts), respectively. As shown in Fig. 1, the catalytic activities of N_2O decomposition on both Fe-BEA and Fe-MFI catalysts were significantly promoted by adding $CH₄$, while N₂O decomposition was inhibited in the presence of $O₂$. Compared with the

Table 1 List of the reaction systems on the catalytic experiments

		Feed composition in mixture gases		
Reaction No.	Catalyst	$N2O$ (ppm)	$O_2(%)$	$CH4$ (ppm)
	Fe-BEA	950		
2	Fe-BEA	950	10	
3	Fe-BEA	950		500
4	Fe-BEA	950	10	500
5	Fe-BEA	950	10	3000
6	Fe-BEA	0	10	500
	Fe-MFI	950		
8	Fe-MFI	950	10	
9	Fe-MFI	950	10	500

 N_2O (950 ppm)/O₂ (10 %)/CH₄ (500 ppm) system, the N₂O conversion curve shifted to lower temperature in the absence of O_2 (O_2 : 10 \rightarrow 0%: **No. 3** and 4 in Fig. 1), while the N₂O conversion was scarcely affected by the composition of $CH₄$ in this range (CH₄: $500 \rightarrow 3000$ ppm: **No. 4** and **5** in Fig. 1). For both Fe-BEA and Fe-MFI, increases of $CH₄$ conversions correlated well with that of N_2O conversions. N_2 , H_2O and CO_2 were observed as the main products in the $N_2O/CH_4/O_2$ system for both catalysts. Moreover, it was found that there was a plateau in CH₄ conversion after N₂O conversion reached 100% (*ca.* 350–450 °C, Fig. 2). This is due to the fact that N_2O in the mixture gas was completely consumed by reaction with $CH₄$ at such temperatures. It should be noted that oxidation of CH_4 by O2 over the Fe-BEA catalyst began above 450 °C (**No. 6** in Fig. 2). These results indicate that the reduction of N_2O and the oxidation of CH₄ in this reaction system $(N_2O/CH_4/O_2)$ concomitantly take place at much lower temperature than each of original reaction temperatures in the N_2O decomposition (N₂O alone: **No. 1** in Fig. 1) and the CH₄ oxidation (CH₄/O₂)

Fig. 1 N₂O conversion to N₂ over Fe-BEA and Fe-MFI. Reaction conditions (**No.**) are described in Table 1.

Fig. 2 CH₄ conversion to CO₂ over Fe-BEA and Fe-MFI. Reaction conditions (**No.**) are described in Table 1.

mixture: **No. 6** in Fig. 2). Therefore, O atoms from N_2O molecules are much more efficient in activating $CH₄$ than O atoms from O_2 molecules at low temperature (< 400 °C).

As also shown in Fig. 1, catalytic activities (per g cat) for the decomposition of N_2O and the selective catalytic reduction (SCR) of N₂O by CH₄ over the Fe-BEA catalyst are much higher than those over the Fe-MFI catalyst. Table 2 shows TOF

Table 2 Comparison of TOF values for N₂O decomposition and SCR of N_2O

	10^{-4} TOFa/s ⁻¹				
Catalyst	Decomposition of N_2O^b $N2$ formation	SCR of N ₂ O by CH_4c			
			N_2 formation CO_2 formation		
Fe-BEA	16.8	21.8	4.35		
Fe-MFI	1.19	1.73	0.07		
	σ Them correlated for an expansion (TOE) $=1$), according to \mathcal{L} and decided to the correlation				

'urnover frequency (TOF: s^{-1}): number of product molecules per number of Fe ions s21. *b* At 430 °C (reaction **No. 1** and **7**). *c* At 300 °C (reaction **No. 4** and **9**).

values based on the catalytic activities in N_2O (**No. 1** and **7**) and N2O/O2/CH4 (**No. 4** and **9**) systems over Fe-BEA and Fe-MFI. The TOF values were estimated by assuming that all of loaded Fe (exchanged with Fe^{2+}) act as active sites. These TOF values, of both the decomposition of N_2O and the SCR of N_2O by CH₄ over Fe-BEA are more than one order of magnitude higher than those over Fe-MFI. From the above results, it is strongly suggested that Fe-BEA zeolite is much more active than Fe-MFI zeolite. The difference in the catalytic activities between Fe-BEA and Fe-MFI suggests that the decomposition of N_2O and the SCR of N_2O by CH₄ may be influenced by the structure of zeolite and/or states of the Fe ions.7 On the other hand, the TOF values of N_2 formation on the SCR of N_2O by CH₄ were significantly higher than those for the decomposition of N_2O over both zeolites. This result indicates that the reaction mechanism for the SCR of N_2O by CH₄ is substantially different from that for the decomposition of N_2O .

The present results have demonstrated that the SCR of N_2O by $CH₄$ in the presence of an excess of $O₂$ occurs effectively over the Fe-BEA catalyst. Interestingly, the reaction temperatures for the SCR of N_2O by CH_4 and the selective oxidation of CH_4 by N₂O over Fe-BEA are much lower than those for N₂O decomposition $(2N_2O \rightarrow 2N_2 + O_2)$ or CH₄ combustion $(CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O)$ even in the presence of excess O_2 . We are currently undertaking further investigations in our laboratory with respect to the detailed mechanism, the effect of coexistent gases $(SO_2, NO, H_2O, etc.)$ and the characterization of active sites (Fe ion states *etc.*).

Notes and references

- 1 H. Rodhe, *Science*, 1990, **248**, 1217.
- 2 F. Kapteijn, J. Rodriguez-Mirasol and J. A. Moulijn, *Appl. Catal. B*, 1996, **9**, 25.
- 3 C. Pophal, T. Yogo, K. Yamada and K. Segawa, *Appl. Catal. B*, 1998, **16**, 177.
- 4 K. Yamada, C. Pophal and K. Segawa, *Microporous Mesoporous Mater.*, 1998, **21**, 549.
- 5 M. Kögel, V. H. Sandoval, W. Schwieger, A. Tissler and T. Turek, Catal. *Lett.*, 1998, **51**, 23.
- 6 M. Kögel, R. Mönnig, W. Schwieger, A. Tissler and T. Turek, J. Catal., 1999, **182**, 470.
- 7 T. Takeda, K. Yuzaki, S. Ito, S.Kameoka, T. Miyadera and K. Kunimori, *The 84th Annual Meeting Catal. Soc. Jpn.*, 1999, 4G07.